The Indefinite Integral (Section 5.2)

1. As seen in the last section, f(x) = A'(x). Therefore, if we are given the function (which is the derivative of the area), and we want to recover the area, we have to

2. The process of finding the antiderivative is to ______.

This process is also called ______.

Integration Notation
$$\frac{d}{dx}[F(x)] = f(x)$$

$$\int f(x)dx = F(x) + c$$

3. Integration Formulas

	Differentiation Formula	Integration Formula
1	$\frac{d}{dx}[x] =$	
2	$\frac{d}{dx} \left[\frac{x^{r+1}}{r+1} \right] =$	
3	$\frac{d}{dx}[\sin x] =$	
4	$\frac{d}{dx}[-\cos x] =$	
5	$\frac{d}{dx}[\tan x] =$ $\frac{d}{dx}[-\cot x] =$	
6	$\frac{d}{dx}[-\cot x] =$	
7	$\frac{d}{dx}[\sec x] =$	
8	$\frac{d}{dx}[-\csc x] =$	
9	$\frac{d}{dx}[e^x] =$	
10	$\frac{dx}{dx}[\ln x] =$	

The Indefinite Integral (Section 5.2)

4. Integration of Powers

To integrate a power of x, undo the differentiation power rule by _____

Example 1: Evaluate

a)
$$\int x^2 dx$$

b)
$$\int x^3 dx$$

a)
$$\int x^2 dx$$
 b) $\int x^3 dx$ c) $\int \frac{1}{x^5} dx$ d) $\int \sqrt{x} dx$

d)
$$\int \sqrt{x} dx$$

Properties of Indefinite Integration

1.
$$\int cf(x)dx =$$

1.
$$\int cf(x)dx =$$
2.
$$\int [f(x) + g(x)]dx =$$
3.
$$\int [f(x) - g(x)] =$$

3.
$$\int [f(x) - g(x)] =$$

Example 2: Evaluate

a)
$$\int 4\cos x dx$$

b)
$$\int (x+x^2)dx$$

a)
$$\int 4\cos x dx$$
 b) $\int (x+x^2)dx$ c) $\int (3x^6-2x^2+7x+1)dx$

Example 3: Evaluate by rewriting first

a)
$$\int \frac{\cos x}{\sin^2 x} dx$$

$$b) \int \frac{t^2 - 2t^4}{t^4} dt$$

The Indefinite Integral (Section 5.2)

Class Work

Find the derivative and state a corresponding integration formula.

$$1. \ \frac{d}{dx} \left[\sqrt{x^3 + 5} \right]$$

$$2. \ \frac{d}{dx} \left[\frac{x}{x^2 + 3} \right]$$

Evaluate the integral. Rewrite first if necessary.

3.
$$\int x^8 dx$$

$$4. \int x^{5/7} dx$$

$$5. \int x^3 \sqrt{x} dx$$

$$6. \int \left[5x + \frac{2}{3x^5} \right] dx$$

Evaluate the integral and check your answer by differentiating.

$$7. \int x(1+x^3)dx$$

8.
$$\int (2+y^2)^2 dy$$